This section focuses on important sets of vectors in \mathbb{R}^{n} called subspaces.
Definition: subspace
A subspace of \mathbb{R}^{n} is any set H in \mathbb{R}^{n} that has three properties:
a. The zero vector is in H.
b. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u}+\mathbf{v}$ is in H.
c. For each \mathbf{u} in H and each scalar c, the vector $c \mathbf{u}$ is in H.

Notice that \mathbb{R}^{n} itself satisfies the definition. So \mathbb{R}^{n} is a subspace of itself f.
Example 1. Assume the sets include the bounding lines. In each case, give a specific reason why the set H is not a subspace of \mathbb{R}^{2}.

$\vec{u}, \vec{v} \in H$ but $\vec{u}+\vec{v} \notin H$. $2 \vec{u} \notin H$.

If we take $\vec{u} \in H$. as in the figure, then $-\vec{u} \notin H$.
Thus H is not a subspace for $\mathbb{N 2}^{2}$

Column Space and Null Space of a Matrix
The column space of a matrix A is the set $\operatorname{Col} A$ of all linear combinations of the columns of A.

Remarks:

- If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, with the columns in \mathbb{R}^{m}, then $\operatorname{Col} A$ is the same as $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.
- Note that $\operatorname{Col} A$ equals \mathbb{R}^{m} only when the columns of A span \mathbb{R}^{m}. Otherwise, $\operatorname{Col} A$ is only part of \mathbb{R}^{m}.

If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, then $\operatorname{Col} A=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\} \neq \mathbb{R}^{2}$
The null space of a matrix A is the set $\mathrm{Nul} A$ of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.
$\operatorname{Nul} A$ has the properties of a subspace of \mathbb{R}^{n} :
THEOREM 12 The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}. Equivalently, the set of all solutions of a system $A \mathbf{x}=\mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^{n}.

Sketch of proof: a). Since $A \overrightarrow{0}=\overrightarrow{0}, \overrightarrow{0} \in N_{n} \mid A$.
b). If $\vec{u}, \vec{v} \in \operatorname{NuIA}$, then $A \vec{u}=\overrightarrow{0}, A \vec{v}=\overrightarrow{0}$. Thus

$$
A(\vec{u}+\vec{v})=\overrightarrow{0} \text {. So } \vec{u}+\vec{v} \in \operatorname{Nul} A \text {. }
$$

c) If $\vec{n} \in \operatorname{Nul} A$, then $A \vec{n}=\overrightarrow{0}$. Thus $A(c \vec{u})=\overrightarrow{0}$. So $c \vec{n} \in N_{n} \mid A$.

Note: To test whether a given vector \mathbf{v} is in vul A, just compute $A \mathbf{v}$ to see whether $A \mathbf{v}$ is the zero vector.

Example 2. Let $\mathbf{v}_{1}=\left[\begin{array}{r}-3 \\ 0 \\ 6\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}0 \\ -6 \\ 3\end{array}\right]$, and $\mathbf{p}=\left[\begin{array}{r}1 \\ 14 \\ -9\end{array}\right]$.
(1) Determine if \mathbf{p} is in $\operatorname{Col} A$, where $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$.
(2) With $\mathbf{u}=\left[\begin{array}{r}-2 \\ 3 \\ 1\end{array}\right]$, determine if \mathbf{u} is in $\operatorname{Nul} A$.

Ans: 11) Recall $\operatorname{Col} A=$ the set of all linear combinations of columns of A.
So if \vec{p} is in $\operatorname{Col} A \Leftrightarrow \vec{p}=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}$ for some $x_{1}, x_{2} x_{3}$

$$
A \vec{x}=\vec{p} \text { has a solution. }
$$

$$
\left[\begin{array}{ll}
A & \vec{p}
\end{array}\right]=\left[\begin{array}{ccc|c}
-3 & -2 & 0 & 1 \\
0 & 2 & -6 & 14 \\
6 & 3 & 3 & -9
\end{array}\right] \sim\left[\begin{array}{ccc|c}
-3 & -2 & 0 & 1 \\
0 & 2 & -6 & 14 \\
0 & -1 & 3 & -7
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc|c}
-3 & -2 & 0 & 1 \\
0 & 2 & -6 & 14 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& \text { Thus the angumented matrix } \\
& \text { corresponds to a consistent system. } \\
& \text { So }
\end{aligned}
$$

(2) To determine if \vec{u} is in $\operatorname{Nul} A$, we simply compute

A basis for a subspace H of \mathbb{R}^{n} is a linearly independent set in H that spans H.

The standard basis for \mathbb{R}^{n}

The columns of an invertible $n \times n$ matrix form a basis for all of \mathbb{R}^{n} because they are linearly independent and span \mathbb{R}^{n}, by the Invertible Matrix Theorem. One such matrix is the $n \times n$ identity matrix. Its columns are denoted by $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$:

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

The set $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is called the standard basis for \mathbb{R}^{n}. See the following Figure.

FIGURE 3
The standard basis for \mathbb{R}^{3}.

Theorem 13
The pivot columns of a matrix A form a basis for the column space of A.

Warning: Be careful to use pivot columns of A itself for the basis of Col A . The columns of an echelon form B are often not in the column space of A.

Example 3. Given a matrix A and an echelon form of A. Find a basis for $\operatorname{Col} A$ and a basis for $\operatorname{Nul} A$.

$$
A=\left[\begin{array}{rrrr}
-3 & 9 & -2 & -7 \\
2 & -6 & 4 & 8 \\
3 & -9 & -2 & 2
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 6 & 9 \\
0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

ANS: Notice that column 1 and column 3 are the pivot columns of A. By The 13, a basis for $\operatorname{Col} A$ is

$$
\left\{\left[\begin{array}{c}
-3 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
-2 \\
4 \\
-2
\end{array}\right]\right\}
$$

\therefore Warning: A wrong choice is to select colum 1 and 3 of the echelon form. These columns have zeros in the third entry and could not generate the columns displayed by A.
For NulA, we first check to solutions for $A \vec{x}=\overrightarrow{0}$.

$$
\left[\begin{array}{cccc|c}
1 & -3 & 6 & 9 & 0 \\
0 & 0 & 4 & 5 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & -3 & 0 & 1.5 & 0 \\
0 & 0 & 0 & 1.25 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to $\left\{x_{1}-3 x_{2}+1.5 x_{4}=0\right.$
$\left(x_{3}\right)+1.25 x_{4}=0$
$0=0$

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3 x_{2}-1.5 x_{4} \\
x_{2} \\
-1.25 x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1.5 \\
0 \\
-1.25 \\
1
\end{array}\right]
$$

This means the solution for $A \vec{x}=\overrightarrow{0}$ can be written down as a linear combination of $\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1.5 \\ 0 \\ -1.25 \\ 1\end{array}\right]$. Moreover, they are linearly independent.
Thus a basis for $N_{M} \mid A$ is

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1.5 \\
0 \\
-1.25 \\
1
\end{array}\right]\right\}
$$

Exercise 4. Determine which of the following sets are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify each answer.

1. $\left[\begin{array}{r}3 \\ -8 \\ 1\end{array}\right],\left[\begin{array}{r}6 \\ 2 \\ -5\end{array}\right]$
2. $\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}-5 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}7 \\ 0 \\ -5\end{array}\right]$
3.

$\left[\begin{array}{r}1 \\ -6 \\ -7\end{array}\right],\left[\begin{array}{r}3 \\ -4 \\ 7\end{array}\right],\left[\begin{array}{r}-2 \\ 7 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 8 \\ 9\end{array}\right]$

Solution.

1. No. The vectors cannot be a basis for \mathbb{R}^{3} because they only span a plane in \mathbb{R}^{3}. Or, point out that the columns of the matrix $\left[\begin{array}{rr}3 & 6 \\ -8 & 2 \\ 1 & -5\end{array}\right]$ cannot possibly span \mathbb{R}^{3} because the matrix cannot have a pivot in every row. So the columns are not a basis for \mathbb{R}^{3}.
Note: The Study Guide warns students NOT to say that the two vectors here are a basis for \mathbb{R}^{2}.
2. Yes. Place the three vectors into a 3×3 matrix A and determine whether A is invertible:

$$
A=\left[\begin{array}{rrr}
1 & -5 & 7 \\
1 & -1 & 0 \\
-2 & 2 & -5
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -5 & 7 \\
0 & 4 & -7 \\
0 & -8 & 9
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -5 & 7 \\
0 & 4 & -7 \\
0 & 0 & -5
\end{array}\right]
$$

The matrix A has three pivots, so A is invertible by the Invertible Matrix Theorem and its columns form a basis for \mathbb{R}^{3}.
3. No. The vectors are linearly dependent because there are more vectors in the set than entries in each vector. (Theorem 8 in Section 1.7.) So the vectors cannot be a basis for any subspace.

