Section 2.8 Subspaces of \mathbb{R}^n

This section focuses on important sets of vectors in \mathbb{R}^n called subspaces.

Definition: subspace

- A **subspace** of \mathbb{R}^n is any set H in \mathbb{R}^n that has three properties:
- a. The zero vector is in H.
- b. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- c. For each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

Example 1. Assume the sets include the bounding lines. In each case, give a specific reason why the set H is not a subspace of \mathbb{R}^2 .

Column Space and Null Space of a Matrix

The **column space** of a matrix A is the set $\operatorname{Col} A$ of all linear combinations of the columns of A.

Remarks:

- If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, with the columns in \mathbb{R}^m , then $\operatorname{Col} A$ is the same as $\operatorname{Span} \{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.
- Note that $\operatorname{Col} A$ equals \mathbb{R}^m only when the columns of A span \mathbb{R}^m . Otherwise, $\operatorname{Col} A$ is only part of \mathbb{R}^m .

$$H = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \text{ then } ColA = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \neq \mathbb{R}^2 \end{bmatrix}$$

The **null space** of a matrix A is the set $\operatorname{Nul} A$ of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Nul A has the properties of a subspace of \mathbb{R}^n :

THEOREM 12 The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions of a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Sketch of proof: a). Since
$$A\vec{\sigma} = \vec{\sigma}$$
, $\vec{\sigma} \in NulA$.
b). If $\vec{u}, \vec{v} \in NulA$, then $A\vec{u} = \vec{\sigma}$, $A\vec{v} = \vec{\sigma}$, Thus
 $A(\vec{u} + \vec{v}) = \vec{\sigma}$. So $\vec{u} + \vec{v} \in NulA$.
c) If $\vec{u} \in NulA$, then $A\vec{u} = \vec{\sigma}$. Thus $A(c\vec{u}) = \vec{\sigma}$. So $c\vec{u} \in NulA$.
Note: To test whether a given vector \mathbf{v} is in Nul A , just compute $A\mathbf{v}$ to see whether $A\mathbf{v}$ is the zero vector.
 $[-3]$ $[-2]$ $[0]$ $[1]$

Example 2. Let
$$\mathbf{v}_1 = \begin{bmatrix} -3\\0\\6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2\\2\\3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0\\-6\\3 \end{bmatrix}$, and $\mathbf{p} = \begin{bmatrix} 1\\14\\-9 \end{bmatrix}$

(1) Determine if \mathbf{p} is in $\operatorname{Col} A$, where $A = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3]$.

(2) With
$$\mathbf{u} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$$
, determine if \mathbf{u} is in Nul A .

So if
$$\vec{p}$$
 is in ColA $\iff \vec{p} = \mathbf{x}_1 \vec{V}_1 + \mathbf{x}_2 \vec{V}_2 + \mathbf{x}_3 \vec{V}_3$ for some $\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_3$
 $\iff A\vec{x} = \vec{p}$ has a solution '

$$\begin{bmatrix} A \vec{p} \end{bmatrix} = \begin{bmatrix} -3 & -2 & 0 & | \\ 0 & 2 & -6 & | \\ 6 & 3 & 3 & | -9 \end{bmatrix} \sim \begin{bmatrix} -3 & -2 & 0 & | \\ 0 & 2 & -6 & | \\ 0 & -1 & 3 & | -7 \end{bmatrix}$$

$$\sim \begin{bmatrix} -3 & -2 & 0 & | \\ 6 & 3 & 3 & | -9 \end{bmatrix} \sim \begin{bmatrix} -1 & 3 & -7 & | \\ 0 & -1 & 3 & | -7 \end{bmatrix}$$

$$\sim \begin{bmatrix} -3 & -2 & 0 & | \\ 0 & 2 & -6 & | \\ 0 & 2 & -6 & | \\ 0 & 2 & -6 & | \\ 0 & 0 & 0 & | \\ 0 & 0 &$$

A **basis for a subspace** H of \mathbb{R}^n is a linearly independent set in H that spans H.

The standard basis for \mathbb{R}^n

The columns of an invertible $n \times n$ matrix form a basis for all of \mathbb{R}^n because they are linearly independent and span \mathbb{R}^n , by the Invertible Matrix Theorem. One such matrix is the $n \times n$ identity matrix. Its columns are denoted by $\mathbf{e}_1, \ldots, \mathbf{e}_n$:

$$\mathbf{e}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, \quad \mathbf{e}_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix}, \quad \dots, \quad \mathbf{e}_n = egin{bmatrix} 0 \ dots \ 0 \ dots \ 0 \end{bmatrix}$$

The set $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is called the standard basis for \mathbb{R}^n . See the following Figure.

FIGURE 3 The standard basis for \mathbb{R}^3 .

Theorem 13

The pivot columns of a matrix A form a basis for the column space of A.

Warning: Be careful to use pivot columns of A itself for the basis of Col A. The columns of an echelon form B are often not in the column space of A.

Example 3. Given a matrix A and an echelon form of A. Find a basis for $\operatorname{Col} A$ and a basis for Nul A.

$$A = \begin{bmatrix} -3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 6 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$AVS: Notice that column 1 and column 3 are the pivot columns of A. By Thm B, a basis for ColA is
$$\begin{cases} \begin{bmatrix} -3 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 4 \\ -3 \end{bmatrix} \end{bmatrix}$$

$$Warning: A wrong choice is to select column 1 and 3 of the echelon form. These columns have zeros in the third entry and could not generate the columns displayed by A.$$
For NulA, we first check to solutions for $A \neq = \overline{0}$.
$$\begin{cases} 1 & -3 & 6 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & 1.5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & 1.5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \circ$$$$

Exercise 4. Determine which of the following sets are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify each answer.

	3		[6]	
1.	-8	,	2	
	1		$\lfloor -5 \rfloor$	

2. $\begin{bmatrix} 1\\1\\-2 \end{bmatrix}, \begin{bmatrix} -5\\-1\\2 \end{bmatrix}, \begin{bmatrix} 7\\0\\-5 \end{bmatrix}$

3.
$$\begin{bmatrix} 1\\-6\\-7 \end{bmatrix}, \begin{bmatrix} 3\\-4\\7 \end{bmatrix}, \begin{bmatrix} -2\\7\\5 \end{bmatrix}, \begin{bmatrix} 0\\8\\9 \end{bmatrix}$$

Solution.

1. No. The vectors cannot be a basis for \mathbb{R}^3 because they only span a plane in \mathbb{R}^3 . Or, point out that the columns of the matrix $\begin{bmatrix} 3 & 6 \\ -8 & 2 \\ 1 & -5 \end{bmatrix}$ cannot possibly span \mathbb{R}^3 because the matrix cannot have a pivot in

every row. So the columns are not a basis for \mathbb{R}^3 .

Note: The *Study Guide* warns students NOT to say that the two vectors here are a basis for \mathbb{R}^2 .

2. Yes. Place the three vectors into a 3 imes 3 matrix A and determine whether A is invertible:

	1	-5	7]		[1	-5	7		[1	-5	7]
A =	1	-1	0	\sim	0	4	-7	\sim	0	4	-7
A =	$\lfloor -2 \rfloor$	2	-5		0	-8	9		0	0	-5

The matrix A has three pivots, so A is invertible by the Invertible Matrix Theorem and its columns form a basis for \mathbb{R}^3 .

3. No. The vectors are linearly dependent because there are more vectors in the set than entries in each vector. (Theorem 8 in Section 1.7.) So the vectors cannot be a basis for any subspace.